
Computer Organization

Computer Aritnmetic:
Introduction:

 Arithmetic instructions in digital computers manipulate data to produce results necessary

for the solution of computational problems.

 These instructions perform arithmetic calculations and are responsible for the bulk of

activity involved in processing data in a computer.

The four basic arithmetic operations are addition, subtraction, multiplication and division.

From these four bulk operations, it is possible to formulate other arithmetic functions and solve

scientific problems by means of numerical analysis methods.

 An arithmetic processor is the part of a processor unit that executes arithmetic operations.

The data type assumed to reside in processor registers during the execution of an

arithmetic instruction is specified in the definition of the instruction. A:n arithmetic

instruction may specify binary or decimal data, and in each case the data may be in fixed-

point or floating-point form.

 We must be thoroughly familiar with the sequence of steps to be followed in order to carry

out the operation and achieve a correct result. The solution to any problem that is stated by

a finite number of well-defined procedural steps is called an algorithm.

 Usually, an algorithm will contain a number of procedural steps which are dependent on

results of previous steps. A convenient method for presenting algorithms is a flowchart.

www.jntufastupdates.com

Computer Organization

Addition and Subtraction:
 As we have discussed, there are three ways of representing negative fixed-point binary

numbers: signed-magnitude, signed-1's complement, or signed-2's complement. Most

computers use the signed-2's complement representation when performing arithmetic

operations with integers.

i. Addition and Subtraction with Signed-Magnitude Data:

When the signed numbers are added or subtracted, we find that there are eight different

conditions to consider, depending on the sign of the numbers and the operation performed.

These conditions are listed in the first column of Table shown below.

Algorithm: (Addition with Signed-Magnitude Data)

i. When the signs of A and B are identical ,add the two magnitudes and attach the sign of

A to the result.

ii. When the signs of A and B are different, compare the magnitudes and subtract the

smaller number from the larger. Choose the sign of the result to be the same as A if A >

B or the complement of the sign of A if A < B.

iii. If the two magnitudes are equal, subtract B from A and make the sign of the result

positive.

Algorithm: (Subtraction with Signed-Magnitude Data)

i. When the signs of A and B are different, add the two magnitudes and attach the sign of
A to the result.

ii. When the signs of A and B are identical, compare the magnitudes and subtract the

smaller number from the larger. Choose the sign of the result to be the same as A if A >

B or the complement of the sign of A if A < B.

iii. If the two magnitudes are equal, subtract B from A and make the sign of the result

positive.

The two algorithms are similar except for the sign comparison. The procedure to be followed for

identical signs in the addition algorithm is the same as for different signs in the subtraction

algorithm, and vice versa.

www.jntufastupdates.com

Computer Organization

Hardware Implementation:

To implement the two arithmetic operations with hardware, it is first necessary that the two

numbers be stored in registers.

i. Let A and B be two registers that hold the magnitudes of the numbers, and AS and BS be
two flip-flops that hold the corresponding signs.

ii. The result of the operation may be transferred to a third register: however, a saving is

achieved if the result is transferred into A and AS. Thus A and AS together form an

accumulator register.

Consider now the hardware implementation of the algorithms above.

o First, a parallel-adder is needed to perform the microoperation A + B.

o Second, a comparator circuit is needed to establish if A > B, A = B, or A < B.
o Third, two parallel-subtractor circuits are needed to perform the microoperations A - B

and B - A. The sign relationship can be determined from an exclusive-OR gate with AS and
BS as inputs.

The below figure shows a block diagram of the hardware for implementing the addition and

subtraction operations. It consists of registers A and B and sign flip-flops AS and BS.
o Subtraction is done by adding A to the 2' s complement of B. The output carry is

transferred to flip-flop E, where it can be checked to determine the relative magnitudes of
the two numbers.

o The add-overflow flip-flop AVF holds the overflow bit when A and B are added.

Figure (i): Hardware for addition and subtraction with Signed-Magnitude Data

The complementer provides an output of B or the complement of B depending on the state of the

mode control M.

 When M = 0, the output of B is transferred to the adder, the input carry is 0, and the output

of the adder is equal to the sum A + B.

 When M= 1, the l's complement of B is applied to the adder, the input carry is 1, and output

 This is equal to A plus the 2's complement of B, which is

equivalent to the subtraction A - B.

www.jntufastupdates.com

Computer Organization

Hardware Algorithm

Figure (j): Flowchart for add and subtract operations

ii. Addition and Subtraction with Signed-2's Complement Data

 The register configuration for the hardware implementation is shown in the below

Figure(a). We name the A register AC (accumulator) and the B register BR. The leftmost

bit in AC and BR represent the sign bits of the numbers. The two sign bits are added or

subtracted together with the other bits in the complementer and parallel adder. The

overflow flip-flop V is set to 1 if there is an overflow. The output carry in this case is

discarded.

 The algorithm for adding and subtracting two binary numbers in signed-2' s complement

representation is shown in the flowchart of Figure(b). The sum is obtained by adding the

contents of AC and BR (including their sign bits). The overflow bit V is set to 1 if the

exclusive-OR of the last two carries is 1, and it is cleared to 0 otherwise. The subtraction

operation is accomplished by adding the content of AC to the 2's complement of BR.

 Comparing this algorithm with its signed-magnitude counterpart, we note that it is much

simpler to add and subtract numbers if negative numbers are maintained in signed-2' s

complement representation.

www.jntufastupdates.com

Computer Organization

Multiplication Algorithms:
Multiplication of two fixed-point binary numbers in signed-magnitude representation is done with

paper and pencil by a process of successive shift and adds operations. This process is best

illustrated with a numerical example.

The process of multiplication:

• It consists of looking at successive bits of the multiplier, least significant bit first.
• If the multiplier bit is a 1, the multiplicand is copied down; otherwise, zeros are copied

down.

• The numbers copied down in successive lines are shifted one position to the left from the
previous number.

• Finally, the numbers are added and their sum forms the product.
The sign of the product is determined from the signs of the multiplicand and multiplier. If they are

alike, the sign of the product is positive. If they are unlike, the sign of the product is negative.

Hardware Implementation for Signed-Magnitude Data

 The registers A, B and other equipment are shown in Figure (a). The multiplier is stored in

the Q register and its sign in Qs. The sequence counter SC is initially set to a number equal

to the number of bits in the multiplier. The counter is decremented by 1 after forming each

partial product. When the content of the counter reaches zero, the product is formed and the

process stops.

www.jntufastupdates.com

Computer Organization

Figure(k): Hardware for multiply operation.

 Initially, the multiplicand is in register B and the multiplier in Q, Their corresponding

signs are in Bs and Qs, respectively

 The sum of A and B forms a partial product which is transferred to the EA register.
 Both partial product and multiplier are shifted to the right. This shift will be denoted by the

statement shr EAQ to designate the right shift.

 The least significant bit of A is shifted into the most significant position of Q, the bit from

E is shifted into the most significant position of A, and 0 is shifted into E. After the shift,

one bit of the partial product is shifted into Q, pushing the multiplier bits one position to

the right.

In this manner, the rightmost flip-flop in register Q, designated by Qn, will hold the bit of the
multiplier, which must be inspected next.

Hardware Algorithm:

Initially, the multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs

and Qs, respectively. The signs are compared, and both A and Q are set to correspond to the sign

of the product since a double-length product will be stored in registers A and Q. Registers A and E

are cleared and the sequence counter SC is set to a number equal to the number of bits of the

multiplier.

After the initialization, the low-order bit of the multiplier in Qn is tested.

i. If it is 1, the multiplicand in B is added to the present partial product in A .

ii. If it is 0 , nothing is done. Register EAQ is then shifted once to the right to form the

new partial product.

The sequence counter is decremented by 1 and its new value checked. If it is not equal to zero,

the process is repeated and a new partial product is formed. The process stops when SC = 0.

The final product is available in both A and Q, with A holding the most significant bits and Q

holding the least significant bits.

A flowchart of the hardware multiply algorithm is shown in the below figure (l).

www.jntufastupdates.com

Computer Organization

Figure(l): Flowchart for multiply operation.

www.jntufastupdates.com

Computer Organization

Figure (m): Numerical Example of multiplication

Booth Multiplication Algorithm:(multiplication of 2’s complement data):

Booth algorithm gives a procedure for multiplying binary integers in signed-2's complement

representation.

Booth algorithm requires examination of the multiplier bits and shifting of the partial product.

Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the

partial product, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least

significant 1 in a string of 1's in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that

there was a previous 1) in a string of O's in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous

multiplier bit.

Hardware implementation of Booth algorithm Multiplication:

Figure (n): Hardware for Booth Algorithm

The hardware implementation of Booth algorithm requires the register configuration shown in

figure (n). This is similar addition and subtraction hardware except that the sign bits are not

separated from the rest of the registers. To show this difference, we rename registers A, B, and Q,

as AC, BR, and QR, respectively. Qn designates the least significant bit of the multiplier in register

www.jntufastupdates.com

Computer Organization

QR. An extra flip-flop Qn+1, is appended to QR to facilitate a double bit inspection of the

multiplier. The flowchart for Booth algorithm is shown in Figure (o).

Hardware Algorithm for Booth Multiplication:

AC and the appended bit Qn+1 are initially cleared to 0 and the sequence counter SC is set to a

number n equal to the number of bits in the multiplier. The two bits of the multiplier in Qn and

Qn+1 are inspected.

i. If the two bits are equal to 10, it means that the first 1 in a string of 1's has been encountered.

This requires a subtraction of the multiplicand from the partial product in AC.

ii. If the two bits are equal to 01, it means that the first 0 in a string of 0's has been encountered.

This requires the addition of the multiplicand to the partial product in AC.

iii. When the two bits are equal, the partial product does not change.

iv. The next step is to shift right the partial product and the multiplier (including bit Qn+1). This

is an arithmetic shift right (ashr) operation which shifts AC and QR to the right and leaves

the sign bit in AC unchanged. The sequence counter is decremented and the computational

loop is repeated n times.

Figure (o): Booth Algorithm for multiplication of 2’s complement numbers

www.jntufastupdates.com

Computer Organization

Example: multiplication of (- 9) x (- 13) = + 117 is shown below. Note that the multiplier in QR

is negative and that the multiplicand in BR is also negative. The 10-bit product appears in AC and

QR and is positive.

Figure (p): Example of Multiplication with Booth Algorithm.

Division Algorithms:

 Division of two fixed-point binary numbers in signed-magnitude representation is done

with paper and pencil by a process of successive compare, shift, and subtract operations.

The division process is illustrated by a numerical example in the below figure (q).

 The divisor B consists of five bits and the dividend A consists of ten bits. The five most

significant bits of the dividend are compared with the divisor. Since the 5-bit number is

smaller than B, we try again by taking the sixth most significant bits of A and compare this

number with B. The 6-bit number is greater than B, so we place a 1 for the quotient bit. The

divisor is then shifted once to the right and subtracted from the dividend.

 The difference is called a partial remainder because the division could have stopped here

to obtain a quotient of 1 and a remainder equal to the partial remainder. The process is

continued by comparing a partial remainder with the divisor.

• If the partial remainder is greater than or equal to the divisor, the quotient bit is equal to 1.

The divisor is then shifted right and subtracted from the partial remainder.

• If the partial remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is

needed. The divisor is shifted once to the right in any case. Note that the result gives both a

quotient and a remainder.

www.jntufastupdates.com

Computer Organization

Figure (q): Example of Binary Division

Hardware Implementation for Signed-Magnitude Data:

The hardware for implementing the division operation is identical to that required for

multiplication.

 The divisor is stored in the B register and the double-length dividend is stored in registers

A and Q. The dividend is shifted to the left and the divisor is subtracted by adding its 2's

complement value. The information about the relative magnitude is available in E.

 If E = 1, it signifies that A≥B. A quotient bit 1 is inserted into Q, and the partial remainder

is shifted to the left to repeat the process.

 If E = 0, it signifies that A < B so the quotient in Qn remains a 0. The value of B is then

added to restore the partial remainder in A to its previous value. The partial remainder is

shifted to the left and the process is repeated again until all five quotient bits are formed.

 Note that while the partial remainder is shifted left, the quotient bits are shifted also and

after five shifts, the quotient is in Q and the final remainder is in A.

The sign of the quotient is determined from the signs of the dividend and the divisor. If the two

signs are alike, the sign o f the quotient is plus. If they are unalike, the sign is minus. The sign of

the remainder is the same as the sign of the dividend.

Divide Overflow

 The division operation may result in a quotient with an overflow. This is not a problem

when working with paper and pencil but is critical when the operation is implemented with

hardware. This is because the length of registers is finite and will not hold a number that

exceeds the standard length.

 To see this, consider a system that has 5-bit registers. We use one register to hold the

divisor and two registers to hold the dividend. From the example shown in the above, we

note that the quotient will consist of six bits if the five most significant bits of the dividend

constitute a number greater than the divisor. The quotient is to be stored in a standard 5-bit

register, so the overflow bit will require one more flip-flop for storing the sixth bit.

 This divide-overflow condition must be avoided in normal computer operations because

the entire quotient will be too long for transfer into a memory unit that has words of

standard length, that is, the same as the length of registers.

 This condition detection must be included in either the hardware or the software of the

computer, or in a combination of the two.

www.jntufastupdates.com

Computer Organization

When the dividend is twice as long as the divisor,

i. A divide-overflow condition occurs if the high-order half bits of the dividend constitute a

number greater than or equal to the divisor.

ii. A division by zero must be avoided. This occurs because any dividend will be greater than

or equal to a divisor which is equal to zero. Overflow condition is usually detected when a

special flip-flop is set. We will call it a divide-overflow flip-flop and label it DVF.

Hardware Algorithm:

1. The dividend is in A and Q and the divisor in B . The sign of the result is

transferred into Qs to be part of the quotient. A constant is set into the sequence counter SC to

specify the number of bits in the quotient.

2. A divide-overflow condition is tested by subtracting the divisor in B from half of

the bits of the dividend stored in A. If A ≥ B, the divide-overflow flip-flop DVF is set and the

operation is terminated prematurely. If A < B, no divide overflow occurs so the value of the

dividend is restored by adding B to A.

3. The division of the magnitudes starts by shifting the dividend in AQ to the left with

the high-order bit shifted into E. If the bit shifted into E is 1, we know that EA > B because EA

consists of a 1 followed by n-1 bits while B consists of only n -1 bits. In this case, B must be

subtracted from EA and 1 inserted into Qn for the quotient bit.

4. If the shift-left operation inserts a 0 into E, the divisor is subtracted by adding its 2's

complement value and the carry is transferred into E . If E = 1, it signifies that A ≥ B;

therefore, Qn is set to 1 . If E = 0, it signifies that A < B and the original number is restored by

adding B to A . In the latter case we leave a 0 in Qn.

This process is repeated again with registers EAQ. After n times, the quotient is

formed in register Q and the remainder is found in register A

www.jntufastupdates.com

Computer Organization

Figure (r): Flowchart for Divide operation

www.jntufastupdates.com

Computer Organization

Figure (s): Example of Binary Division

.

www.jntufastupdates.com

Computer Organization

Basic Computer Organization and Design

Instruction Codes:

The general purpose digital computer is capable of executing various micro-operations and also

can be instructed as to what specific sequence of operations it must perform. The user of a

computer can control the process by using a program.

 A program is a set of instructions that specify the operations, operands, and the sequence

by which processing has to occur.

 A computer instruction is a binary code that specifies a sequence of microoperations for

the computer. Instruction codes together with data are stored in memory. The computer

reads each instruction from memory and places it in a control register. The control then

interprets the binary code of the instruction and proceeds to execute it by issuing a

sequence of microoperations.

 An instruction code is a group of bits that instruct the computer to perform a specific

operation. It is usually divided into parts, each having its own particular interpretation.

 The most basic part of an instruction code is its operation part. The operation code of an

instruction is a group of bits that define such operations as add, subtract, multiply, shift,

and complement.

 The operation part of an instruction code specifies the operation to be performed. This

operation must be performed on some data stored in processor registers or in memory.

 An instruction code must therefore specify not only the operation but also the registers or

the memory words where the operands are to be found, as well as the register or memory

word where the result is to be stored.

www.jntufastupdates.com

Computer Organization

Stored Program Organization

The simplest way to organize a computer is to have one processor register and an instruction

code format with two parts. The first part specifies the operation to be performed and the second

specifies an address.

 The memory address tells the control where to find an operand in memory. This operand is

read from memory and used as the data to be operated on together with the data stored in

the processor register.

The below figure shows this type of organization.

Figure (k): Stored program organization

Instructions are stored in one section of memory and data in another.

EX: A memory unit with 4096 words, we need 12 bits to specify an address since 212 = 4096. If

we store each instruction code in one 16-bit memory word, we have available four bits for the

operation code (opcode) to specify one out of 16 possible operations, and 12 bits to specify the

address of an operand.

The control reads a 16-bit instruction from the program portion of

memory. It uses the 12-bit address part of the instruction to read a 16-bit operand from the data

portion of memory. It then executes the operation specified by the operation code.

 Computers that have a single-processor register usually assign to it the name accumulator

and label it AC . The operation is performed with the memory operand and the content of

AC .

 If an operation in an instruction code does not need an operand from memory, the rest of

the bits in the instruction can be used for other purposes. For example, operations such as

clear AC, complement AC, and increment AC operate on data stored in the AC register.

They do not need an operand from memory.

Indirect Address

 When the second part of an instruction code specifies an operand, the instruction is said to

have an immediate operand.

 When the second part specifies the address of an operand, the instruction is said to have a

direct address.

www.jntufastupdates.com

Computer Organization

 When the bits in the second part of the instruction designate an address of a memory word

in which the address of the operand is found, the instruction is said to an indirect address.

One bit of the instruction code can be used to distinguish between a direct and an indirect

address.

 An effective address is the address of the operand.

Figure (l): Demonstration of direct and indirect address.

Computer Registers:

Computer instructions are normally stored in consecutive memory locations

and are executed sequentially one at a time. The control reads an instruction from a specific

address in memory and executes it. It then continues by reading the next instruction in sequence

and executes it, and so on.

This type of instruction sequencing needs a counter to calculate the address of

the next instruction after execution of the current instruction is completed. It is also necessary to

provide a register in the control unit for storing the instruction code after it is read from memory.

The computer needs processor registers for manipulating data and a register for holding a memory

address.

www.jntufastupdates.com

Computer Organization

The registers available in the computer are shown in the below figure (m) and table (f), a brief

description of their function and the number of bits that they contain also given.

Figure (m): Basic computer registers and memory.

Table (f): List of Registers for the Basic computer.

Common Bus System:

 The basic computer has eight registers, a memory unit, and a control unit. Paths must be

provided to transfer information from one register to another and between memory and

registers.

 The number of wires will be excessive if connections are made between the outputs of

each register and the inputs of the other registers. A more efficient scheme for transferring

information in a system with many registers is to use a common bus.

The connection of the registers and memory of the basic computer to a common bus system is

shown in the below figure (n).

www.jntufastupdates.com

Computer Organization

Figure (n): Basic computer registers connected to a common bus.

www.jntufastupdates.com

Computer Organization

 The outputs of seven registers and memory are connected to the common bus. The specific

output that is selected for the bus lines at any given time is determined from the binary

value of the selection variables S2, S1, and S0.

For example1, the number along the output of DR is 3. The 16-bit outputs of DR are placed on the

bus lines when S2S1S0 = 011 since this is the binary value of decimal 3.
For example2, The memory places its 16-bit output onto the bus when the read input is activated

and S2S1S0 = 111.

 The content of any register can be applied onto the bus and an operation can be performed

in the adder and logic circuit during the same clock cycle. The clock transition at the end of

the cycle transfers the content of the bus into the designated destination register and the

output of the adder and logic circuit into AC.

For example, the two rnicrooperations

DR AC and AC DR
can be executed at the same time. This can be done by placing the content of AC on the bus (with

S2S1S0 = 100), enabling the LD (load) input of DR, transferring the content of DR through the

adder and logic circuit into AC, and enabling the LD (load) input of AC, all during the same clock

cycle.

Computer Instructions:

The basic computer has three types of instruction code formats,

1. Memory-reference instruction.

2. Register-reference instruction.

3. An input-output instruction.

Each format has 16 bits. The operation code (opcode) part of the instruction contains three bits and

the meaning of the remaining 13 bits depends on the operation code encountered.

Figure (n): Basic computer instruction formats

www.jntufastupdates.com

Computer Organization

The type of instruction is recognized by the computer control from the four bits in positions 12

through 15 of the instruction.

 If the three opcode bits in positions 12 to 14 are not equal to 111, the instruction is a

memory-reference type and the bit in position 15 is taken as the addressing mode I. A

memory-reference instruction uses 12 bits to specify an address and one bit to specify the

addressing mode I. I = 0 for direct address and I = 1 for indirect address.

 If the 3-bit opcode = 111, control then inspects the bit in position 15. If this bit = 0, the

instruction is a register-reference type. These instructions use 16 bits to specify an

operation.

 If the bit I = 1, the instruction is an input-output type. These instructions also use all 16

bits to specify an operation.

The instructions for the computer are listed in Table (g, h, i).

Table (g): Memory-reference instructions

Table (h): Register-reference instructions

Table (i): Input-output instructions

www.jntufastupdates.com

Computer Organization

The hexadecimal code is equal to the equivalent hexadecimal number of the binary code

used for the instruction. By using the hexadecimal equivalent we reduced the 16 bits of an

instruction code to four digits with each hexadecimal digit being equivalent to four bits.

A) memory-reference instruction has an address part of 12 bits. The address part is denoted by

three x's and stand for the three hexadecimal digits corresponding to the 12-bit address. The last bit

of the instruction is designated by the symbol I.

i. When I = 0, the last four bits of an instruction have a hexadecimal digit equivalent from

0 (000) to 6 (110) since the last bit is 0.

ii. When I = I, the hexadecimal digit equivalent of the last four bits of the instruction

ranges from 8 (1000) to E (1110) since the last bit is I.

B) Register-reference instructions use 16 bits to specify an operation. The leftmost four bits are

always 0111, which is equivalent to hexadecimal 7. The other three hexadecimal digits give the

binary equivalent of the remaining 12 bits.

C) The input-output instructions also use all 16 bits to specify an operation. The last four bits

are always 1111, equivalent to hexadecimal F.

Instruction Set Completeness

A computer should have a set of instructions so that the user can construct machine

language programs to evaluate any function that is known to be computable. The set of instructions

are said to be complete if the computer includes a sufficient number of instructions in each of the

following categories:

1. Arithmetic, logical, and shift instructions.

2. Instructions for moving information to and from memory and processor registers.

3. Program control instructions together with instructions that check status conditions.

4. Input and output instructions.

Instruction Cycle:

A program residing in the memory unit of the computer consists of a sequence of instructions. The

program is executed in the computer by going through a cycle for each instruction. Each

instruction cycle in turn is subdivided into a sequence of subcycles or phases. In the basic

computer each instruction cycle consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an indirect address.

4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch,

decode, and execute the next instruction. This process continues indefinitely unless a HALT

instruction is encountered.

Fetch and Decode:

Initially, the program counter PC is loaded with the address of the first instruction in the

program. The sequence counter SC is cleared to 0, providing a decoded timing signal T0. After

each clock pulse, SC is incremented by one, so that the timing signals go through a sequence T0,

T1, T2, and so on. The rnicrooperations for the fetch and decode phases can be specified by the

following register transfer statements.

www.jntufastupdates.com

Computer Organization

Since only AR is connected to the address inputs of memory, it is necessary to transfer the address

from PC to AR during the clock transition associated with timing signal T0. The instruction read

from memory is then placed in the instruction register IR with the clock transition associated with

timing signal T1. At the same time, PC is incremented by one to prepare it for the address of the

next instruction in the program. At time T2, the operation code in IR is decoded, the indirect bit is

transferred to flip-flop I, and the address part of the instruction is transferred to AR. Note that SC

is incremented after each clock pulse to produce the sequence T0, T1, and T2.

Figure (o): Register transfers for the fetch phase

The above Figure (o) shows how the first two register transfer statements are implemented in the

bus system. To provide the data path for the transfer of PC to AR we must apply timing signal T0

to achieve the following connection:

1. Place the content of PC onto the bus by making the bus selection inputs S2 S1 S0

equal to 010.

2. Transfer the content of the bus to AR by enabling the LD input of AR.

The next clock transition initiates the transfer from PC to AR since T0 = 1.
In order to implement the second statement

T1: IRM[AR], PC PC + 1

www.jntufastupdates.com

Computer Organization

It is necessary to use timing signal T1 to provide the following connections in the bus system.
1. Enable the read input of memory.

2. Place the content of memory onto the bus by making S2 S1 S0 = 111.

3. Transfer the content of the bus to IR by enabling the LD input of IR.

4. Increment PC by enabling the INR input of PC.

Determine the Type of Instruction

The timing signal that is active after the decoding is T3. During time T3 the control unit determines

the type of instruction that was just read from memory.

Decoder output D7 is equal to 1 if the operation code is equal to binary 111.

 If D7 = 1, the instruction must be a register-reference or input-0utput type.

 If D7 = 0, the operation code must be one of the other seven values 000 through 110,

specifying a memory-reference instruction.

The three instruction types are subdivided into four separate paths. The selected

operation is activated with the clock transition associated with timing signal T3.This can be

symbolized as follows:

When a memory-reference instruction with I = 0 is encountered, it is not necessary to do anything

since the effective address is already in AR. However, the sequence counter SC must be

incremented when D7’T3 = 1, so that the execution of the memory-reference instruction can be

continued with timing variable T4. A register-reference or input-output instruction can be executed

with the clock associated with timing signal T3. After the instruction is executed, SC is cleared to 0

and control returns to the fetch phase with T0 = 1.

The flowchart of Figure (p) presents an initial configuration for the instruction cycle and shows

how the control determines the instruction type after the decoding

www.jntufastupdates.com

Computer Organization

Figure (p): Flowchart for instruction cycle (initial configuration).

Register-Reference Instructions:

Register-reference instructions are recognized by the control when D7 = 1 and I = 0. These

instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions. These

12 bits are available in IR(0 -11). They were also transferred to AR during time T2 .

 Each control function needs the Boolean relation D7 I' T3, which we designate for

convenience by the symbol r . The control function is distinguished by one of the bits in

www.jntufastupdates.com

Computer Organization

IR(0-11). By assigning the symbol Bi to bit i of IR, all control functions can be simply

denoted by rBi.
 For example, the instruction CLA has the hexadecimal code 7800, which gives the binary

equivalent 0111 1000 0000 0000.

i. The first bit is a zero and is equivalent to I'.
ii. The next three bits constitute the operation code and are recognized from decoder

output D7.

iii. Bit 11 in IR is 1 and is recognized from B11.

The control function that initiates the rnicrooperation for this instruction

is D7 I' T3 B11 = r B11

Table (j): Execution of Register-Reference Instructions

Memory-Reference Instructions:
 The below Table (k) lists the seven memory-reference instructions. The decoded output Di

for i = 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs to each instruction is

included in the table.

 The effective address of the instruction is in the address register AR and was placed there

during timing signal T2 when I = 0, or during timing signal T3 when I = 1. The execution

of the memory-reference instructions starts with timing signal T4.

Table (k): Memory-Reference Instructions

AND : AND to AC

This is an instruction that performs the AND logic operation on pairs of bits in AC and the

memory word specified by the effective address. The result of the operation is transferred to AC.

The rnicrooperations that execute this instruction are:

www.jntufastupdates.com

Computer Organization

D0T4: DR M[AR]

D0T5: AC AC Ʌ DR, SC 0

ADD : ADD to AC

This instruction adds the content of the memory word specified by the effective address to the

value of AC. The sum is transferred into AC and the output carry C,., is transferred to the E

(extended accumulator) flip-flop. The rnicrooperations needed to execute this instruction are:
D1T4 : DR M[AR]
D1T5: AC AC + DR, E Cout, SC 0

LDA: Load to AC

This instruction transfers the memory word specified by the effective address to AC . The

rnicrooperations needed to execute this instruction are:

D2T4: DR M[AR]

D2T5: AC DR, SC 0
STA: Store AC

This instruction stores the content of AC into the memory word specified by the effective address.

Since the output of AC is applied to the bus and the data input of memory is connected to the bus,

we can execute this instruction with one microoperation:

BUN: Branch Unconditionally
 This instruction transfers the program to the instruction specified by the effective address.
 The BUN instruction allows the programmer to specify an instruction out of sequence and

we say that the program branches (or jumps) unconditionally. The instruction is executed

with one rnicrooperation:

BSA: Branch and Save Return Address

This instruction is useful for branching to a portion of the program called a subroutine or

procedure. When executed, the BSA instruction stores the address of the next instruction in

sequence (which is available in PC) into a memory location specified by the effective address. The

effective address plus one is then transferred to PC to serve as the address of the first instruction in

the subroutine.

BSA: Branch and Save Return Address

EX:

The BSA instruction is assumed to be in memory at address 20. The I bit is 0 and the

address part of the instruction has the binary equivalent of 135. After the fetch and decode phases,

PC contains 21, which is the address of the next instruction in the program (referred to as the

return address). AR holds the effective address 135. This is shown in part (a) of the figure. The

BSA instruction performs the following numerical operation:

The result of this operation is shown in part (b) of the figure. The return address 21 is stored in

memory location 135 and control continues with the subroutine program starting from address 136.

The return to the original program (at address 21) is accomplished by means of an indirect BUN

instruction placed at the end of the subroutine. When this instruction is executed, control goes to

the indirect phase to read the effective address at location 135, where it finds the previously saved

address 21. When the BUN instruction is executed, the effective address 21 is transferred to PC.

The next instruction cycle finds PC with the value 21, so control continues to execute the

instruction at the return address.

www.jntufastupdates.com

Computer Organization

It is not possible to perform the operation of the BSA instruction in one clock cycle when we use

the bus system of the basic computer. To use the memory and the bus properly, the BSA

instruction must be executed With a sequence of two microoperations:

Timing signal T4 initiates a memory write operation, places the content of PC onto the bus, and

enables the INR input of AR . The memory write operation is completed and AR is incremented by

the time the next clock transition occurs. The bus is used at T5 to transfer the content of AR to PC.

ISZ: Increment and Skip if Zero

This instruction increments the word specified by the effective address, and if the incremented

value is equal to 0, PC is incremented by 1. The programmer usually stores a negative number (in

2's complement) in the memory word. As this negative number is repeatedly incremented by one,

it eventually reaches the value of zero. At that time PC is incremented by one in order to skip the

next instruction in the program.

A flowchart showing all microoperations for the execution of the seven memory-

reference instructions is shown in Figure (q). The control functions are indicated on top of each

box. The microoperations that are performed during time T4, T5, or T6, depend on the operation

code value. The sequence counter SC is cleared to 0 with the last timing signal in each case. This

causes a transfer of control to timing signal T0 to start the next instruction cycle.

www.jntufastupdates.com

Computer Organization

Figure (q): Flowchart for Memory-reference instructions

www.jntufastupdates.com

Computer Organization

Input-Output and Interrupt:
computer can serve no useful purpose unless it communicates with the external

environment. Instructions and data stored in memory must come from some input device.

Computational results must be transmitted to the user through some output device. Commercial

computers include many types of input and output devices.

Input-Output Configuration

The terminal sends and receives serial information. Each quantity of information has eight bits of

an alphanumeric code. The serial information from the keyboard is shifted into the input register

INPR. The serial information for the printer is stored in the output register OUTR . These two

registers communicate with a communication interface serially and with the AC in parallel.

Figure (r): Input-Output configuration

The process of information transfer is as follows: Initially, the input flag FGI is cleared to 0.

When a key is struck in the keyboard, an 8-bit alphanumeric code is shifted into INPR and the

input flag FGI is set to 1. As long as the flag is set, the information in INPR cannot be changed by

striking another key. The computer checks the flag bit; if it is 1, the information from INPR is

transferred in parallel into AC and FGI is cleared to 0. Once the flag is cleared, new information

can be shifted into INPR by striking another key.

Initially, the output flag FGO is set to 1. The computer checks the flag bit; if it is 1, the information

from AC is transferred in parallel to OUTR and FGO is cleared to 0. The output device accepts the

coded information, prints the corresponding character, and when the operation is completed, it sets

FGO to 1. The computer does not load a new character into OUTR when FGO is 0 because this

condition indicates that the output device is in the process of printing the character.

Input-Output Instructions

Input and output instructions are needed for transferring information to and from AC register, for

checking the flag bits, and for controlling the interrupt facility.

Input-output instructions have an operation code 1111 and are recognized by the control

when D7 = 1 and I = 1. The remaining bits of the instruction specify the particular operation. The

control functions and microoperations for the input-output instructions are listed in Table (l).

www.jntufastupdates.com

Computer Organization

Table (l): Input-Output instructions

Program Interrupt

The process of communication discussed so far is referred to as programmed control transfer.

The computer keeps checking the flag bit, and when it finds it set, it initiates an information

transfer. The difference of information flow rate between the computer and the input-output

device makes this type of transfer inefficient.

 To see why this is inefficient, consider a computer that can go through an instruction cycle

in 1µs. Assume that the input-output device can transfer information at a maximum rate of

10 characters per second. This is equivalent to one character every 100,000 µs. Two

instructions are executed when the computer checks the flag bit and decides not to transfer

the information. This means that at the maximum rate, the computer will check the flag

50,000 times between each transfer. The computer is wasting time while checking the flag

instead of doing some other useful processing task.

 An alternative to the programmed controlled procedure is to let the external device

inform the computer when it is ready for the transfer. In the meantime the computer

can be busy with other tasks. This type of transfer uses the interrupt facility.
 While the computer is running a program, it does not check the flags. However, when a

flag is set , the computer is momentarily interrupted from proceeding with the current

program and is informed of the fact that a flag has been set. The computer deviates

momentarily from what it is doing to take care of the input or output transfer. It then

returns to the current program to continue what it was doing before the interrupt.
 The interrupt enable flip-flop lEN can be set and cleared with two instructions (IOF and

ION instructions).

www.jntufastupdates.com

Computer Organization

Figure (s): Flowchart for interrupt cycle

The way that the interrupt is handled by the computer can be explained by means of the

flowchart of Figure (s).

 An interrupt flip-flop R is included in the computer. When R = 0, the computer goes

through an instruction cycle.

 During the execute phase of the instruction cycle lEN is checked by the control. If it is 0, it

indicates that the programmer does not want to use the interrupt, so control continues with

the next instruction cycle.

 If lEN is 1, control checks the flag bits. If both flags are 0, it indicates that neither the input

nor the output registers are ready for transfer of information. In this case, control continues

with the next instruction cycle. If either flag is set to 1 while lEN = 1, flip-flop R is set to 1.

 At the end of the execute phase, control checks the value of R, and if it is equal to 1, it

goes to an interrupt cycle instead of an instruction cycle.

The interrupt cycle is a hardware implementation of a branch and save return address(BSA)

operation.

EX:

www.jntufastupdates.com

Computer Organization

Figure (t): Demonstration of Interrupt Cycle

An example that shows what happens during the interrupt cycle is shown in Figure

(t). Suppose that an interrupt occurs and R is set to 1 while the control is executing the instruction

at address 255. At this time, the return address 256 is in PC. The programmer has previously

placed an input-output service program in memory starting from address 1120 and a BUN 1120

instruction at address 1. This is shown in Figure (a).

When control reaches timing signal T0 and finds that R = 1, it proceeds with the interrupt

cycle. The content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared to 0.

At the beginning of the next instruction cycle, the instruction that is read from memory is in

address 1 since this is the content of PC. The branch instruction at address 1 causes the program to

transfer to the input-output service program at address 1120. This program checks the flags,

determines which flag is set, and then transfers the required input or output information. Once this

is done, the program returns to the location where it was interrupted. This is shown in Figure (b).

Interrupt Cycle

The interrupt cycle is initiated after the last execute phase if the interrupt flip-flop R is equal to 1.

This flip-flop is set to 1 if lEN = 1 and either FGI or FGO are equal to 1. This can happen with any

clock transition except when timing signals T0, T1 or T2 are active. The condition for setting flip-

flop R to 1 can be expressed with the following register transfer statement:

During the first timing signal AR is cleared to 0, and the content of PC is transferred to the

temporary register TR. With the second timing signal, the return address is stored in memory at

location 0 and PC is cleared to 0. The third timing signal increments PC to 1, clears lEN and R,

and control goes back to T0 by clearing SC to 0. The beginning of the next instruction cycle has

the condition R' T0 and the content of PC is equal to 1. The control then goes through an

instruction cycle that fetches and executes the BUN instruction in location 1.

www.jntufastupdates.com

Computer Organization

Complete Computer Description:
The final flowchart of the instruction cycle, including the interrupt cycle for the basic computer, is

shown in the below figure (u). The interrupt flip-flop R may be set at any time during the indirect

or execute phases. Control returns to timing signal T0 after SC is cleared to 0.
 If R = 1, the computer goes through an interrupt cycle.
 If R = 0, the computer goes through an instruction cycle.

If the instruction is one of the memory-reference instructions, the computer first checks if there is

an indirect address and then continues to execute the decoded instruction. If the instruction is one

of the register-reference instructions, it will be executed. If it is an input-output instruction, it will

be executed.

Figure (u): Flowchart for computer operation

www.jntufastupdates.com

Computer Organization

Table (m): Control functions and microoperations for the Basic computer

www.jntufastupdates.com

Computer Organization

Instead of using a flowchart, we can describe the operation of the computer with a list of register

transfer statements. This is done by accumulating all the control functions and microoperations in

one table, as shown in the below Table (m).

The register transfer statements in this table describe in a concise form the internal organization of

the basic computer. They also give all the information necessary for the design of the logic circuits

of the computer.

A register transfer language is useful not only for describing the internal organization of a

digital system but also for specifying the logic circuits needed for its design.

www.jntufastupdates.com

	JNTUK 2-1 Computer Organization - UNIT-1
	Computer Aritnmetic:
	Addition and Subtraction:
	i. Addition and Subtraction with Signed-Magnitude Data:
	Hardware Implementation:
	Hardware Algorithm
	ii. Addition and Subtraction with Signed-2's Complement Data

	Multiplication Algorithms:
	The process of multiplication:
	Hardware Implementation for Signed-Magnitude Data
	Hardware Algorithm:
	Booth Multiplication Algorithm:(multiplication of 2’s complement data):
	Hardware implementation of Booth algorithm Multiplication:
	Hardware Algorithm for Booth Multiplication:

	Division Algorithms:
	Hardware Implementation for Signed-Magnitude Data:
	Divide Overflow
	Hardware Algorithm:

	JNTUK 2-1 Computer Organization - UNIT-2
	Arithmetic Logic Shift Unit:
	Basic Computer Organization and Design
	Stored Program Organization
	Indirect Address
	direct address.

	Computer Registers:
	Common Bus System:

	Computer Instructions:
	Instruction Set Completeness

	Instruction Cycle:
	Fetch and Decode:
	Determine the Type of Instruction
	Register-Reference Instructions:
	The control function that initiates the rnicrooperation for this instruction is D7 I' T3 B11 = r B11

	Memory-Reference Instructions:
	AND : AND to AC
	ADD : ADD to AC
	LDA: Load to AC
	STA: Store AC
	BUN: Branch Unconditionally
	BSA: Branch and Save Return Address
	BSA: Branch and Save Return Address EX:
	ISZ: Increment and Skip if Zero

	Input-Output and Interrupt:
	Input-Output Configuration
	Input-Output Instructions
	Program Interrupt
	Interrupt Cycle

	Complete Computer Description:
	A register transfer language is useful not only for describing the internal organization of a digital system but also for specifying the logic circuits needed for its design.

